Journal of Organometallic Chemistry, 153 (1978) C41-C44 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

ÜBERGANGSMETALL-CARBIN-KOMPLEXE

XLIV*. STRUKTURUNTERSUCHUNGEN AN trans-HALOGENO-TETRACARBONYLMETHYLCARBIN-WOLFRAM-KOMPLEXEN

D. NEUGEBAUER, E.O. FISCHER^{*}, NGUYEN QUY DAO^{**} und U. SCHUBERT Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D 8046 Garching (B.R.D.)

(Eingegangen den 7. April 1978)

Es liegt eine grosse Anzahl von Strukturuntersuchungen an Übergangsmetall—Carbin-Komplexen vor, über die kürzlich zusammenfassend berichtet wurde [2]. Während über den Einfluss von Substituenten und Liganden auf die Molekülstruktur detaillierte Aussagen möglich sind, wurde deren Einfluss auf die Kristallstruktur bisher nicht systematisch untersucht. Im Rahmen unserer schwingungs-, speziell Raman-spektroskopischen Untersuchungen [3] haben wir jetzt die Kristallstrukturen von trans-J(CO)₄WCCH₃ (I) und trans-Br(CO)₄WCCH₃ (II) bestimmt und diese mit der bereits bekannten Struktur von trans-Cl(CO)₄WCCH₃ (III) [4] verglichen.

Experimentelles

Die Bestimmung der Kristalldaten (s. Tabelle 1) und die Intensitätsmes-TABELLE 1

KRISTALLDATENa

	J(CO) ₄ WCCH ₃ (I) ^b	Br(CO) ₄ WCCH ₃ (II)	Cl(CO) ₄ WCCH ₃ (III) [4]	
Molekulargewicht Raumgruppe Moleküle/Zelle Zellkonstanten: a b c V Dichte (berechnet) Linearer Absorptions- koeff. $\mu(Mo-K_{o})$	449.9 <i>Cmcm</i> 4 790(1) pm 1076(1) pm 1056(1) pm 981 × 10 ⁶ pm ³ 3.05 g cm ⁻³ 156.2 cm ⁻¹	402.9 P2 ₁ 2 ₁ 2 ₁ 4 673(1) pm 1216(1) pm 1197(1) pm 979 X 10 ⁶ pm ³ 2.73 g cm ⁻³ 167.7 cm ⁻¹	358.9 $P2_12_12_1$ 4 676(1) pm 1192(1) pm 1178(1) pm 950 X 10 ⁶ pm ³ 2.51 g cm ⁻³ 131.2 cm ⁻¹	

^aMo-K_α (λ 71.069 pm, Graphit-Monochromator). ^bMesstemperatur --30°C.

*XLIII. Mitteilung s. Ref. 1.

*Ständige Anschrift: Institut de Chimie, Ecole Centrale des Arts et Manufactures, F-92290 Chatenay-Malabry (France). TABELLE 2

T		II			i dentri en Li se const		da i				
WJ	286.7(3)	W-Br	264.8(6)								
WC(10)	203(2)	W - C(10)	214(6) 213(5)	· ·	1990 M.	1		·			
		W-C(12)	210(5)				·				i di
		WC(13)	210(6)		•					i sa Si ana	
WC(1)	177(4)	WC(1)	182(4)								
C(1)-C(2)	157(5)	C(1)-C(2)	144(6)		1.1		· · .		•		
₩C(1)C(2)	180	W-C(1)-C(2)	178(4)								

TABELLE 3

ATOMPARAMETER VON I UND II

Die anisotropen Temperaturfaktoren sind gegeben durch $\exp[-\frac{1}{4}(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hka^*c^* + 2B_{23}klb^*c^*)]; B_{ij}$ in 10⁴ pm².

Die eingeklammerten Zahlen bezeichnen die Standardabweichungen der letzten angegebenen Dezimalstelle

J(CO), W	VCCH ₁ (I)					
Atom	x/a	у/б	z/c	B		
W.	0.0	0.1321(2)	0.25			· · · · ·
J	0.0	-0.1117(2)	0.25			
C(10)	0.184(3)	0.132(2)	0.116(2)	1.6(3)		
0(10)	0.295(2)	0.135(1)	0.043(2)	2.7(3)		
C(1)	0.0	0.283(3)	0.25	0.6(5)	· · · · ·	
C(2)	0.0	0.416(3)	0.25	0.7(6)		
Atom	B ₁₁	B ₂₂	B ₃₃	B12	B ₁₃	B ₂₃
w	1.24(6)	0.05(5)	1.38(5)	0.0	0.0	0.0
J	1.86(12)	0.29(10)	2.59(12)	0.0	• 0.0	0.0
Br(CO).	WCCH, (II)	· · · · · · · · · · · · · · · · · · ·				
Atom	x/a	у/Ъ	z/c	В		
w	0.3067(3)	0.1201(1)	0.2468(2)			
Er	0.4265(13)	-0.0209(4)	0.0922(5)			
C(1)	0.211(8)	0.213(4)	0.353(3)	2.6(9)		
C(2)	0.138(7)	0.289(4)	0.435(4)	3.0(10)		
C(10)	0.578(10)	0.211(4)	0.231(5)	5.3(13)		
0(10)	0.721(6)	0.250(3)	0.209(3)	5.9(10)		
C(11)	0.190(9)	0.210(4)	0.108(4)	4.0(11)		
0(11)	0.107(8)	0.268(4)	0.052(3)	7.8(14)		
C(12)	0.048(7)	0.025(3)	0.264(4)	3.0(9)		
0(12)	-0.091(8)	-0.021(4)	0.276(4)	9.1(13)		
C(13)	0.437(12)	0.019(5)	0.369(5)	6.1(16)		
0(13)	0.522(7)	-0.035(3)	0.425(3)	6.4(12)		
Atom	B ₁₁	B ₂₂	B ₃₃	B12	B ₁₃	B ₂₃
W .	3.33(8)	1.86(6)	3.67(7)	0.18(9)	0.02(15)	0.35(12)
Br	6.4(4)	3.3(3)	5.6(3)	1.0(3)	0.2(3)	1.5(3)

sungen wurden auf einem Syntex P2, Vierkreisdiffraktometer durchgeführt (Mo- K_{α} -Strahlung, Graphit-Monochromator, λ 71.069 pm, ω -scan, I: $2 \leq 2\theta \leq 60^{\circ}$, Messtemp. -30° C, II: $2 \leq 2\theta \leq 60^{\circ}$, Messtemp. $+25^{\circ}$ C). Die Strukturen wurden anhand von 493 (I) bzw. 744 (II) Strukturfaktoren ($I \geq 3.1 \sigma$) nach der Schweratom-Methode gelöst und nach der Methode der kleinsten Quadrate mit der vollständigen Matrix bis zu R = 0.065 (I) bzw. 0.075 (II) verfeinert. Eine Absorptions-Korrektur wurde nur an Verbindung II durchgeführt. In Tabelle 2 sind Abstände und Winkel, in Tabelle 3 die Atomparameter wiedergegeben.

Ergebnisse

Die in I und II gefundenen Abstände und Winkel entsprechen den zu erwartenden Werten [2]. Beide Wolfram—Halogen-Bindungen zeigen die auch bei anderen derartigen Komplexen beobachteten Verkürzungen gegenüber den berechneten Einfachbindungs-Abständen [2].

In der Reihe der Carbin-Komplexe trans- $X(CO)_4WCCH_3$ (X = Cl, Br, J) besitzen nur die beiden Komplexe II (X = Br) und III (X = Cl) einen gleichartigen Bau des Kristallgitters (s. Tabelle 1). Beim Übergang zu I (X = J) ändert sich die Anordnung der Moleküle im Kristallgitter; sie ist dann jedoch die gleiche wie in trans-J(CO)₄CrCCH₃ [5]. Während also der Austausch des Halogen-Atoms in I eine Umorientierung der Moleküle in der Elementarzelle bewirkt, hat ein Wechsel des Metall-Atoms keine derartigen Folgen. Figur 1 zeigt den Gitteraufbau von I, Figur 2 den von II.

Im Gitter von I besitzen die Moleküle C_{2v} -Lagesymmetrie, mit intermolekularen Wolfram—Jod-Abständen von 497 bzw. 528 pm. Die linearen Jod—Wolfram—Carbinkohlenstoff-Gruppierungen sind parallel zueinander und zur b-Achse der Elementarzelle, jedoch abwechselnd um 180° gegeneinander gedreht. Im Gegensatz dazu besitzen die Moleküle im Gitter von II

Fig. 1. Der Gitteraufbau von trans-J(CO)₄WCCH₃ (I) [6].

Fig. 2. Der Gitteraufbau von trans-Br(CO)4 WCCH3 (II) [6].

(bzw. III) nur mehr C_1 -Lagesymmetrie, mit kürzesten intermolekularen Wolfram-Brom-Abständen von 459 bzw. 510 pm. Die verschiedenen Packungen von I und II sollten auf unterschiedliche Van der Waals-Kräfte zwischen den Molekülen zurückzuführen sein.

Dank

Wir danken Herrn Dr. W.R. Wagner für die Züchtung der Kristalle, der Deutschen Forschungsgemeinschaft, Bonn-Bad Godesberg, und der BASF AG für die Unterstützung dieser Arbeit sowie Herrn Prof. Dr. G. Thiele für wertvolle Diskussionen. N.Q.D. dankt der Alexander-von-Humboldt-Stiftung für ein Stipendium.

Literatur

- 1 E.O. Fischer und A. Frank, Chem. Ber., im Druck.
- 2 G. Huttner, A. Frank und E.O. Fischer, Israel J. Chem., 15 (1976/77) 133.
- 3 E.O. Fischer, N.Q. Dao, W.R. Wagner und D. Neugebauer, Chem. Ber., in Vorbereitung.
- 4 A. Frank, Dissertation Technische Universität München 1978.
- 5 G. Huttner, H. Lorenz und W. Gartzke, Angew. Chem., 86 (1974) 667; Angew. Chem. Int. Ed. Engl., 13 (1974) 609.
- 6 Zeichenprogramm PLOTØ, R. Davies und G. Huttner, Technische Universität München 1977, unveröllentlicht.